Q6 Express each of the following in terms of trigonometric ratios of angles between 0° to 45°:
(i) tan 81° + cos 72° (ii) cot 49° + cosec 87°.
Solution :
Q7 (i) sin2 28° – cos2 62° = 0
(ii) cos2 25° + cos2 65° = 1
(iii) cosec2 67° – tan2 23° = 1
( iv) sec 222° – cot268° = 1.
Solution :
,
Q8 (i) sin 63° cos 27° + cos 63° sin 27° = 1
(ii) sec 31° sin 59° + cos 31° cosec 59° = 2.
Solution :
,
Q9 (i) sec 70° sin 20° – cos 20° cosec 70° = 0
(ii) sin2 20° + sin2 70° – tan2 45° = 0.
Solution :
Q10 (i) cot 54°/tan 36° + tan 20°/cot 70° – 2 = 0
(ii) sin 50°/cos 40° + cosec 40°/sec 50° – 4 cos 50° cosec 40° + 2 = 0.
Solution :
,
Q11 (i) cos 70° /sin 20° + cos 59°/sin 31° – 8 sin2 30° = 0 (ii) cos 80°/sin 10° + cos 59° cosec 31° = 2.
Solution :
,
Q12 without using trigonometrical tables, evaluate:
(iii) sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°.
Solution :
,,,
Q13 Prove the following:
Solution :
,,,
Q14 Prove the following
Solution :
,,
Q15 Simply the following
Solution :
,,
Q16 Show that:
Solution :
,
Q17 Find the value of A if
(i) sin 3A = cos (A – 6°), where 3A and A – 6° are acute angles (ii) tan 2A = cot (A – 18°), where 2A and A – 18° are acute angles (iii) If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A.
Solution :
,,
Q18 Find the value of θ (0° < θ < 90°) if:
(i) cos 63° sec (90° – θ)=1
(ii) tan 35° cot (90° – θ)=1.
Solution :
,
Q19 If A, B and C are the interior angles of a △ ABC, show that
(i) cos (A + B)/2 = sin C/2 (ii) tan (C + A)/2 = cot B/2.