Expansions Exercise 3.1



Please Select

Q1 By using standard formulae, expand the following (1 to 9):
(i) (2x + 7y)2
(ii) (1/2 x + 2/3 y)2



Q2 (i) (3x + 1/2x)2
(ii) (3x2 y + 5z)2



Q3 (i) (3x - 1/2x)2
(ii) (1/2 x - 3/2 y)2



Q4 (i) (x + 3) (x + 5)
(ii) (x + 3) (x - 5)
(iii) (x - 7) (x + 9)
(iv) (x - 2y) (x - 3y)



Q5 (i) (x - 2y - z)2
(ii) (2x - 3y + 4z)2



Q6 (i) (2x + 3/x - 1)2
(ii) (2/3 x - 3/2x - 1)2



Q7 (i) (x + 2)3
(ii) (2a + b)3



Q8 A man has certain notes of denominations Rs. 20 and Rs. 5 which amount to Rs. 380. If the number of notes of each kind is interchanged, they amount to Rs. 60 less as before. Find the number of notes of each denomination.



Q9 (i) (3x + 1/x)3
(ii) (2x - 1)3



Q10 Simplify the following (10 to 19):
(i) (a + b)2 + (a - b)2
(ii) (a + b)2 - (a - b)2



Q11 (i) (a + 1/a)2 + (a - 1/a)2
(ii) (a + 1/a)2 - (a - 1/a)2



Q12 (i) (3x - 1)2 - (3x - 2) (3x + 1)
(ii) (4x + 3y)2 - (4x - 3y)2 - 48xy



Q13 (i) (7p + 9q) (7p - 9q)
(ii) (2x - 3/x) (2x + 3/x)



Q14 (i) (2x - y + 3) (2x - y - 3)
(ii) (3x + y - 5) (3x - y - 5)



Q15 (i) (x + 2/x - 3) (x - 2/x - 3)
(ii) (5 - 2x) (5 + 2x) (25 + 4x2 )



Q16 (i) (x + 2y + 3) (x + 2y + 7)
(ii) (2x + y + 5) (2x + y - 9)
(iii) (x - 2y - 5) (x - 2y + 3)
(iv) (3x - 4y - 2) (3x - 4y - 6)



Q17 (i) (2p + 3q) (4p2 - 6pq + 9q2 )
(ii) (x + 1/x) (x2 - 1 + 1/x2 )



Q18 (i) (3p - 4q) (9p2 + 12pq + 16q2 )
(ii) (x - 3/x) (x2 + 3 + 9/x2 )



Q19 (2x + 3y + 4z) (4x2 + 9y2 + 16z2 - 6xy - 12yz - 8zx).



Q20 Find the product of the following:
(i) (x + 1) (x + 2) (x + 3)
(ii) (x - 2) (x - 3) (x + 4)



Q21 Find the coefficient of x2 and x in the product of (x - 3) (x + 7) (x - 4).



Q22 If a2 + 4a + x = (a + 2)2 , find the value of x.



Q23 Use (a + b)2 = a2 + 2ab + b2 to evaluate the following:
(i) (101)2
(ii) (1003)2
(iii) (10.2)2



Q24 Use (a - b)2 = a2 - 2ab - b 2 to evaluate the following:
(i) (99)2
(ii) (997)2
(iii) (9.8)2



Q25 By using suitable identities, evaluate the following:
(i) (103)3
(ii) (99)3
(iii) (10.1)3



Q26 If 2a - b + c = 0, prove that 4a2 - b 2 + c2 + 4ac = 0.



Q27 If a + b + 2c = 0, prove that a3 + b3 + 8c3 = 6abc.



Q28 If a + b + c = 0, then find the value of a2 /bc + b2 /ca + c2 /ab



Q29 If x + y = 4, then find the value of x3 + y3 + 12xy - 64.



Q30 Without actually calculating the cubes, find the values of:
(i) (27)3 + (-17)3 + (-10)3
(ii) (-28)3 + (15)3 + (13)3



Q31 Using suitable identity, find the value of:



Contact Us

Get In Touch With Us